

Software Engineering
Tenth Edition

Ian Sommerville

Boston   Columbus   Indianapolis   New York   San Francisco   Hoboken

Amsterdam   Cape Town   Dubai   London   Madrid   Milan   Munich   Paris   Montreal   Toronto

Delhi   Mexico City   São Paulo   Sydney   Hong Kong   Seoul   Singapore   Taipei   Tokyo

Vice President and Editorial Director,
  ECS: Marcia J. Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
Product Marketing Manager: Bram Van Kempen
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Production Project Manager: Rose Kernan
Program Manager: Carole Snyder
Global HE Director of Vendor Sourcing and
  Procurement: Diane Hynes
Director of Operations: Nick Sklitsis
Operations Specialist: Maura Zaldivar-Garcia

Cover Designer: Black Horse Designs
Cover Image: Construction of the Gherkin,
  London, UK./Corbis
Manager, Rights and Permissions: Rachel
  Youdelman
Associate Project Manager, Rights and
Permissions: Timothy Nicholls
Full-Service Project Management: Rashmi
  Tickyani, iEnergizer Aptara®, Ltd.
Composition: iEnergizer Aptara®, Ltd.
Printer/Binder: Edwards Brothers Malloy
Cover Printer: Phoenix Color/Hagerstown
Typeface: 10/12.5 Times LT Std

Copyright © 2016, 2011, 2006 by Pearson Higher Education, Inc., Hoboken, NJ 07030. All rights
reserved. Manufactured in the United States of America. This publication is protected by Copyright and
permissions should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use materials from this work, please submit a written
request to Pearson Higher Education, Permissions Department, 221 River Street, Hoboken, NJ 07030.

Many of the designations by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of theories and programs to determine their effectiveness. The author
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not be liable in any event for incidental
or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London
Pearson Education Singapore, Pte. Ltd
Pearson Education Canada, Inc.
Pearson Education—Japan
Pearson Education Australia PTY, Limited

Pearson Education North Asia, Ltd., Hong Kong
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education Malaysia, Pte.Ltd.
Pearson Education, Inc., Hoboken, New Jersey

Library of Congress Cataloging-in-Publication Data on File

10  9  8  7  6  5  4  3  2  1

ISBN 10: 0-13-394303-8
ISBN 13: 978-0-13-394303-0

Progress in software engineering over the last 50 years has been astonishing. Our
societies could not function without large professional software systems. National
utilities and infrastructure—energy, communications and transport—all rely on
complex and mostly reliable computer systems. Software has allowed us to explore
space and to create the World Wide Web—the most significant information system
in the history of mankind. Smartphones and tablets are ubiquitous and an entire ‘apps
industry’ developing software for these devices has emerged in the past few years.

Humanity is now facing a demanding set of challenges—climate change and
extreme weather, declining natural resources, an increasing world population to be fed
and housed, international terrorism, and the need to help elderly people lead satisfying
and fulfilled lives. We need new technologies to help us address these challenges and,
for sure, software will have a central role in these technologies. Software engineering
is, therefore, critically important for our future on this planet. We have to continue to
educate software engineers and develop the discipline so that we meet the demand for
more software and create the increasingly complex future systems that we need.

Of course, there are still problems with software projects. Systems are still some-
times delivered late and cost more than expected. We are creating increasingly com-
plex software systems of systems and we should not be surprised that we encounter
difficulties along the way. However, we should not let these problems conceal the
real successes in software engineering and the impressive software engineering
methods and technologies that have been developed.

This book, in different editions, has now been around for over 30 years and this edi-
tion is based around the essential principles that were established in the first edition:

1.	 I write about software engineering as it is practiced in industry, without taking
an evangelical position on particular approaches such as agile development or
formal methods. In reality, industry mixes techniques such as agile and plan-
based development and this is reflected in the book.

Preface

iv    Preface

2.	 I write about what I know and understand. I have had many suggestions for
additional topics that might be covered in more detail such as open source
development, the use of the UML and mobile software engineering. But I don’t
really know enough about these areas. My own work has been in system depend-
ability and in systems engineering and this is reflected in my selection of
advanced topics for the book.

I believe that the key issues for modern software engineering are managing com-
plexity, integrating agility with other methods and ensuring that our systems are
secure and resilient. These issues have been the driver for the changes and additions
in this new edition of my book.

Changes from the 9th edition

In summary, the major updates and additions in this book from the 9th edition are:

•	 I have extensively updated the chapter on agile software engineering, with new
material on Scrum. I have updated other chapters as required to reflect the increas-
ing use of agile methods of software engineering.

•	 I have added new chapters on resilience engineering, systems engineering and
systems of systems.

•	 I have completely reorganized three chapters covering reliability, safety and security.

•	 I have added new material on RESTful services to the chapter covering service-
oriented software engineering.

•	 I have revised and updated the chapter on configuration management with new
material on distributed version control systems.

•	 I have moved chapters on aspect-oriented software engineering and process
improvement from the print version of the book to the web site.

•	 New supplementary material has been added to the web site, including a set of
supporting videos. I have explained key topics on video and recommended related
YouTube videos.

The 4-part structure of the book, introduced in earlier editions, has been retained
but I have made significant changes in each part of the book.

1.	 In Part 1, Introduction to software engineering, I have completely rewritten
Chapter 3 (agile methods) and updated this to reflect the increasing use of Scrum.
A new case study on a digital learning environment has been added to Chapter 1
and is used in a number of chapters. Legacy systems are covered in more detail
in Chapter 9. Minor changes and updates have been made to all other chapters.

	 Preface    v

2.	 Part 2, which covers dependable systems, has been revised and restructured.
Rather than an activity oriented approach where information on safety, security
and reliability is spread over several chapters, I have reorganized this so that
each topic has a chapter in its own right. This makes it easier to cover a single
topic, such as security, as part of a more general course. I have added a com-
pletely new chapter on resilience engineering which covers cybersecurity,
organizational resilience and resilient systems design.

3.	 In Part 3, I have added new chapters on systems engineering and systems of
systems and have extensively revised the material on service-oriented systems
engineering to reflect the increasing use of RESTful services. The chapter on
aspect-oriented software engineering has been deleted from the print version but
remains available as a web chapter.

4.	 In Part 4, I have updated the material on configuration management to reflect
the increasing use of distributed version control tools such as Git. The chapter
on process improvement has been deleted from the print version but remains
available as a web chapter.

An important change in the supplementary material for the book is the addition of
video recommendations in all chapters. I have made over 40 videos on a range of topics
that are available on my YouTube channel and linked from the book’s web pages. In cases
where I have not made videos, I have recommended YouTube videos that may be useful.

I explain the rationale behind the changes that I’ve made in this short video:
http://software-engineering-book/videos/10th-edition-changes

Readership

The book is primarily aimed at university and college students taking introductory
and advanced courses in software and systems engineering. I assume that readers
understand the basics of programming and fundamental data structures.

Software engineers in industry may find the book useful as general reading and to
update their knowledge on topics such as software reuse, architectural design,
dependability and security and systems engineering.

Using the book in software engineering courses

I have designed the book so that it can be used in three different types of software
engineering course:

1.	� General introductory courses in software engineering. The first part of the book
has been designed to support a 1-semester course in introductory software engi-
neering. There are 9 chapters that cover fundamental topics in software engineering.

http://software-engineering-book/videos/10th-edition-changes

If your course has a practical component, management chapters in Part 4 may be
substituted for some of these.

  2.	� Introductory or intermediate courses on specific software engineering topics.
You can create a range of more advanced courses using the chapters in parts
2–4. For example, I have taught a course in critical systems using the chapters in
Part 2 plus chapters on systems engineering and quality management. In a course
covering software-intensive systems engineering, I used chapters on systems
engineering, requirements engineering, systems of systems, distributed software
engineering, embedded software, project management and project planning.

  3.	� More advanced courses in specific software engineering topics. In this case, the
chapters in the book form a foundation for the course. These are then supple-
mented with further reading that explores the topic in more detail. For example,
a course on software reuse could be based around Chapters 15–18.

Instructors may access additional teaching support material from Pearson’s website.
Some of this is password-protected and instructors using the book for teaching can
obtain a password by registering at the Pearson website. The material available includes:

•	 Model answers to selected end of chapter exercises.

•	 Quiz questions and answers for each chapter.

You can access this material at:
http://www.pearsonhighered.com/sommerville

Book website

This book has been designed as a hybrid print/web text in which core information in the
printed edition is linked to supplementary material on the web. Several chapters include
specially written ‘web sections’ that add to the information in that chapter. There are also
six ‘web chapters’ on topics that I have not covered in the print version of the book.

You can download a wide range of supporting material from the book’s website
(software-engineering-book.com) including:

•	 PowerPoint presentations for all of the chapters in the book.

•	 A set of videos where I cover a range of software engineering topics. I also rec-
ommend other YouTube videos that can support learning.

•	 An instructor’s guide that gives advice on how to use the book in teaching differ-
ent courses.

•	 Further information on the book’s case studies (insulin pump, mental health care
system, wilderness weather system, digital learning system), as well other case
studies, such as the failure of the Ariane 5 launcher.

vi    Preface

http://www.pearsonhighered.com/sommerville

•	 Six web chapters covering process improvement, formal methods, interaction
design, application architectures, documentation and aspect-oriented development.

•	 Web sections that add to the content presented in each chapter. These web sec-
tions are linked from breakout boxes in each chapter.

•	 Additional PowerPoint presentations covering a range of systems engineering
topics.

In response to requests from users of the book, I have published a complete
requirements specification for one of the system case studies on the book’s web site.
It is difficult for students to get access to such documents and so understand their
structure and complexity. To avoid confidentiality issues, I have re-engineered the
requirements document from a real system so there are no restrictions on its use.

Contact details

Website: software-engineering-book.com
Email: name: software.engineering.book; domain: gmail.com
Blog: iansommerville.com/systems-software-and-technology
YouTube: youtube.com/user/SoftwareEngBook
Facebook: facebook.com/sommerville.software.engineering
Twitter: @SoftwareEngBook or @iansommerville (for more general tweets)

Follow me on Twitter or Facebook to get updates on new material and comments on
software and systems engineering.

Acknowledgements

A large number of people have contributed over the years to the evolution of this
book and I’d like to thank everyone (reviewers, students and book users) who have
commented on previous editions and made constructive suggestions for change. I’d
particularly like to thank my family, Anne, Ali and Jane, for their love, help and sup-
port while I was working on this book (and all of the previous editions).

Ian Sommerville,
September 2014

	 Preface    vii

Contents at a glance

Preface	 iii

	 Part 1	 Introduction to Software Engineering	 01
	 Chapter 1	 Introduction 	 03
	 Chapter 2	 Software processes 	 29
	 Chapter 3	 Agile software development 	 58
	 Chapter 4	 Requirements engineering 	 87
	 Chapter 5	 System modeling 	 124
	 Chapter 6	 Architectural design 	 153
	 Chapter 7	 Design and implementation 	 182
	 Chapter 8	 Software testing 	 212
	 Chapter 9	 Software evolution 	 241

	 Part 2	 System Dependability and Security	 269
	 Chapter 10	 Dependable systems 	 271
	 Chapter 11	 Reliability engineering 	 292
	 Chapter 12	 Safety engineering 	 325
	 Chapter 13	 Security engineering 	 359
	 Chapter 14	 Resilience engineering 	 394

	 Part 3	 Advanced Software Engineering	 421
	 Chapter 15	 Software reuse 	 423
	 Chapter 16	 Component-based software engineering 	 450
	 Chapter 17	 Distributed software engineering 	 476
	 Chapter 18	 Service-oriented software engineering 	 506
	 Chapter 19	 Systems engineering 	 537
	 Chapter 20	 Systems of systems 	 566
	 Chapter 21	 Real-time software engineering 	 596

	 Part 4	 Software management	 625
	 Chapter 22	 Project management 	 627
	 Chapter 23	 Project planning 	 653
	 Chapter 24	 Quality management 	 686
	 Chapter 25	 Configuration management 	 716

Glossary	 743

Subject index	 763

Author index	 789

Contents

Preface	 iii

	 Part 1	 Introduction to Software Engineering	 01

	 Chapter 1	 Introduction 	 03

1.1 	 Professional software development 	 05

1.2 	 Software engineering ethics 	 14

1.3 	 Case studies 	 17

	 Chapter 2	 Software processes 	 29

2.1 	 Software process models 	 31

2.2 	 Process activities 	 40

2.3 	 Coping with change 	 47

2.4 	 Process improvement 	 51

	 Chapter 3	 Agile software development 	 58

3.1 	 Agile methods 	 61

3.2 	 Agile development techniques 	 63

3.3 	 Agile project management 	 70

3.4 	 Scaling agile methods 	 74

x    Contents

	 Chapter 4	 Requirements engineering 	 87

4.1 	 Functional and non-functional requirements 	 91

4.2 	 Requirements engineering processes 	 97

4.3 	 Requirements elicitation 	 98

4.4 	 Requirements specification 	 106

4.5 	 Requirements validation 	 115

4.6 	 Requirements change 	 116

	 Chapter 5	 System modeling 	 124

5.1 	 Context models 	 127

5.2 	 Interaction models 	 130

5.3 	 Structural models 	 135

5.4 	 Behavioral models 	 140

5.5 	M odel-driven architecture 	 145

	 Chapter 6	 Architectural design 	 153

6.1 	 Architectural design decisions 	 157

6.2 	 Architectural views 	 159

6.3 	 Architectural patterns 	 161

6.4 	 Application architectures 	 170

	 Chapter 7	 Design and implementation 	 182

7.1 	 Object-oriented design using the UML 	 184

7.2 	 Design patterns 	 195

7.3 	 Implementation issues 	 198

7.4 	 Open-source development 	 205

	 Chapter 8	 Software testing 	 212

8.1 	 Development testing 	 217

8.2 	 Test-driven development 	 228

	 Contents    xi

8.3 	 Release testing 	 231

8.4 	 User testing 	 235

	 Chapter 9	 Software evolution 	 241

9.1 	 Evolution processes 	 244

9.2 	 Legacy systems 	 247

9.3 	 Software maintenance 	 256

	 Part 2	 System Dependability and Security	 269

	 Chapter 10	 Dependable systems 	 271

10.1 	Dependability properties 	 274

10.2 	Sociotechnical systems 	 277

10.3 	Redundancy and diversity 	 281

10.4 	Dependable processes 	 283

10.5 	Formal methods and dependability 	 285

	 Chapter 11	 Reliability engineering 	 292

11.1 	Availability and reliability 	 295

11.2 	Reliability requirements 	 298

11.3 	Fault-tolerant architectures 	 304

11.4 	Programming for reliability 	 311

11.5 	Reliability measurement 	 317

	 Chapter 12	 Safety engineering 	 325

12.1 	Safety-critical systems 	 327

12.2 	Safety requirements 	 330

12.3 	Safety engineering processes 	 338

12.4 	Safety cases 	 347

	 Chapter 13	 Security engineering 	 359

13.1 	Security and dependability 	 362

13.2 	Security and organizations 	 366

13.3 	Security requirements 	 368

13.4 	Secure systems design 	 374

13.5 	Security testing and assurance 	 388

	 Chapter 14	 Resilience engineering 	 394

14.1 	Cybersecurity 	 398

14.2 	Sociotechnical resilience 	 402

14.3 	Resilient systems design 	 410

	 Part 3	 Advanced Software Engineering	 421

	 Chapter 15	 Software reuse 	 423

15.1 	The reuse landscape 	 426

15.2 	Application frameworks 	 429

15.3 	Software product lines 	 432

15.4 	Application system reuse 	 439

	 Chapter 16	 Component-based software engineering 	 450

16.1 	Components and component models 	 453

16.2 	CBSE processes 	 459

16.3 	Component composition 	 466

	 Chapter 17	 Distributed software engineering 	 476

17.1 	Distributed systems 	 478

17.2 	Client–server computing 	 485

xii    Contents

17.3 	Architectural patterns for distributed systems 	 487

17.4 	Software as a service 	 498

	 Chapter 18	 Service-oriented software engineering 	 506

18.1 	Service-oriented architecture 	 510

18.2 	RESTful services 	 515

18.3 	Service engineering 	 519

18.4 	Service composition 	 527

	 Chapter 19	 Systems engineering 	 537

19.1 	Sociotechnical systems 	 542

19.2 	Conceptual design 	 549

19.3 	System procurement 	 552

19.4 	System development 	 556

19.5 	System operation and evolution 	 560

	 Chapter 20	 Systems of systems 	 566

20.1 	System complexity 	 570

20.2 	Systems of systems classification 	 573

20.3 	Reductionism and complex systems 	 576

20.4 	Systems of systems engineering 	 579

20.5 	Systems of systems architecture 	 585

	 Chapter 21	 Real-time software engineering 	 596

21.1 	Embedded system design 	 599

21.2 	Architectural patterns for real-time software 	 606

21.3 	Timing analysis 	 612

21.4 	Real-time operating systems 	 617

	 Contents    xiii

	 Part 4	 Software Management	 625

	 Chapter 22	 Project management 	 627

22.1 	Risk management 	 630

22.2 	Managing people 	 638

22.3 	Teamwork 	 642

	 Chapter 23	 Project planning 	 653

23.1 	Software pricing 	 656

23.2 	Plan-driven development 	 658

23.3 	Project scheduling 	 661

23.4 	Agile planning 	 666

23.5 	Estimation techniques 	 668

23.6 	COCOMO cost modeling 	 672

	 Chapter 24	 Quality management 	 686

24.1 	Software quality 	 689

24.2 	Software standards 	 692

24.3 	Reviews and inspections 	 696

24.4 	Quality management and agile development 	 700

24.5 	Software measurement 	 702

	 Chapter 25	 Configuration management 	 716

25.1 	Version management 	 721

25.2 	System building 	 726

25.3 	Change management 	 731

25.4 	Release management 	 736

Glossary 	 743
Subject index 	 763
Author index 	 789

xiv    Contents

PART

My aim in this part of the book is to provide a general introduction to soft-
ware engineering. The chapters in this part have been designed to support
a one-semester first course in software engineering. I introduce impor-
tant concepts such as software processes and agile methods, and describe
essential software development activities, from requirements specification
through to system evolution.

Chapter 1 is a general introduction that introduces professional software
engineering and defines some software engineering concepts. I have also
included a brief discussion of ethical issues in software engineering. It is
important for software engineers to think about the wider implications of
their work. This chapter also introduces four case studies that I use in the
book. These are an information system for managing records of patients
undergoing treatment for mental health problems (Mentcare), a control
system for a portable insulin pump, an embedded system for a wilder-
ness weather station and a digital learning environment (iLearn).

Chapters 2 and 3 cover software engineering processes and agile devel-
opment. In Chapter 2, I introduce software process models, such as the
waterfall model, and I discuss the basic activities that are part of these
processes. Chapter 3 supplements this with a discussion of agile devel-
opment methods for software engineering. This chapter had been

 1 Introduction
to Software
Engineering

extensively changed from previous editions with a focus on agile devel-
opment using Scrum and a discussion of agile practices such as stories
for requirements definition and test-driven development.

The remaining chapters in this part are extended descriptions of the
software process activities that are introduced in Chapter 2. Chapter 4
covers the critically important topic of requirements engineering, where
the requirements for what a system should do are defined. Chapter 5
explains system modeling using the UML, where I focus on the use of
use case diagrams, class diagrams, sequence diagrams and state dia-
grams for modeling a software system. In Chapter 6, I discuss the impor-
tance of software architecture and the use of architectural patterns in
software design.

Chapter 7 introduces object oriented design and the use of design pat-
terns. I also introduce important implementation issues here—reuse,
configuration management and host-target development and discuss
open source development. Chapter 8 focuses on software testing from
unit testing during system development to the testing of software
releases. I also discuss the use of test-driven development—an
approach pioneered in agile methods but which has wide applicabil-
ity. Finally, Chapter 9 presents an overview of software evolution
issues. I cover evolution processes, software maintenance and legacy
system management.

Introduction
1

Objectives
The objectives of this chapter are to introduce software engineering and
to provide a framework for understanding the rest of the book. When you
have read this chapter, you will:

■	 understand what software engineering is and why it is important;

■	 understand that the development of different types of software
system may require different software engineering techniques;

■	 understand ethical and professional issues that are important
for software engineers;

■	 have been introduced to four systems, of different types, which are
used as examples throughout the book.

Contents
1.1 	Professional software development

1.2 	Software engineering ethics

1.3 	Case studies

4    Chapter 1  ■  Introduction

Software engineering is essential for the functioning of government, society, and national
and international businesses and institutions. We can’t run the modern world without
software. National infrastructures and utilities are controlled by computer-based systems,
and most electrical products include a computer and controlling software. Industrial
manufacturing and distribution is completely computerized, as is the financial system.
Entertainment, including the music industry, computer games, and film and television, is
software-intensive. More than 75% of the world’s population have a software-controlled
mobile phone, and, by 2016, almost all of these will be Internet-enabled.

Software systems are abstract and intangible. They are not constrained by the prop-
erties of materials, nor are they governed by physical laws or by manufacturing pro-
cesses. This simplifies software engineering, as there are no natural limits to the potential
of software. However, because of the lack of physical constraints, software systems can
quickly become extremely complex, difficult to understand, and expensive to change.

There are many different types of software system, ranging from simple embed-
ded systems to complex, worldwide information systems. There are no universal
notations, methods, or techniques for software engineering because different types
of software require different approaches. Developing an organizational information
system is completely different from developing a controller for a scientific instru-
ment. Neither of these systems has much in common with a graphics-intensive com-
puter game. All of these applications need software engineering; they do not all need
the same software engineering methods and techniques.

There are still many reports of software projects going wrong and of “software
failures.” Software engineering is criticized as inadequate for modern software
development. However, in my opinion, many of these so-called software failures
are a consequence of two factors:

1.	 Increasing system complexity As new software engineering techniques help us
to build larger, more complex systems, the demands change. Systems have to be
built and delivered more quickly; larger, even more complex systems are
required; and systems have to have new capabilities that were previously
thought to be impossible. New software engineering techniques have to be
developed to meet new the challenges of delivering more complex software.

2.	 Failure to use software engineering methods It is fairly easy to write computer
programs without using software engineering methods and techniques. Many
companies have drifted into software development as their products and ser-
vices have evolved. They do not use software engineering methods in their every-
day work. Consequently, their software is often more expensive and less reliable
than it should be. We need better software engineering education and training to
address this problem.

Software engineers can be rightly proud of their achievements. Of course, we still
have problems developing complex software, but without software engineering we
would not have explored space and we would not have the Internet or modern tele-
communications. All forms of travel would be more dangerous and expensive.
Challenges for humanity in the 21st century are climate change, fewer natural

	 1.1  ■  Professional software development    5

resources, changing demographics, and an expanding world population. We will rely
on software engineering to develop the systems that we need to cope with these issues.

	 1.1	 Professional software development

Lots of people write programs. People in business write spreadsheet programs to
simplify their jobs; scientists and engineers write programs to process their experi-
mental data; hobbyists write programs for their own interest and enjoyment.
However, most software development is a professional activity in which software is
developed for business purposes, for inclusion in other devices, or as software prod-
ucts such as information systems and computer-aided design systems. The key dis-
tinctions are that professional software is intended for use by someone apart from its
developer and that teams rather than individuals usually develop the software. It is
maintained and changed throughout its life.

Software engineering is intended to support professional software development
rather than individual programming. It includes techniques that support program
specification, design, and evolution, none of which are normally relevant for per-
sonal software development. To help you to get a broad view of software engineer-
ing, I have summarized frequently asked questions about the subject in Figure 1.1.

Many people think that software is simply another word for computer programs.
However, when we are talking about software engineering, software is not just the
programs themselves but also all associated documentation, libraries, support web-
sites, and configuration data that are needed to make these programs useful. A pro-
fessionally developed software system is often more than a single program. A system
may consist of several separate programs and configuration files that are used to set
up these programs. It may include system documentation, which describes the struc-
ture of the system, user documentation, which explains how to use the system, and
websites for users to download recent product information.

This is one of the important differences between professional and amateur soft-
ware development. If you are writing a program for yourself, no one else will use it

History of software engineering

The notion of software engineering was first proposed in 1968 at a conference held to discuss what was then
called the software crisis (Naur and Randell 1969). It became clear that individual approaches to program devel-
opment did not scale up to large and complex software systems. These were unreliable, cost more than
expected, and were delivered late.

Throughout the 1970s and 1980s, a variety of new software engineering techniques and methods were
developed, such as structured programming, information hiding, and object-oriented development. Tools and
standard notations were developed which are the basis of today’s software engineering.

http://software-engineering-book.com/web/history/

http://software-engineering-book.com/web/history

6    Chapter 1  ■  Introduction

Figure 1.1  Frequently
asked questions about
software engineering

Question Answer

What is software? Computer programs and associated documentation. Software
products may be developed for a particular customer or may be
developed for a general market.

What are the attributes of good
software?

Good software should deliver the required functionality and
performance to the user and should be maintainable, dependable
and usable.

What is software engineering? Software engineering is an engineering discipline that is concerned
with all aspects of software production from initial conception to
operation and maintenance.

What are the fundamental
software engineering activities?

Software specification, software development, software validation
and software evolution.

What is the difference between
software engineering and
computer science?

Computer science focuses on theory and fundamentals; software
engineering is concerned with the practicalities of developing and
delivering useful software.

What is the difference between
software engineering and system
engineering?

System engineering is concerned with all aspects of computer-
based systems development including hardware, software and
process engineering. Software engineering is part of this more
general process.

What are the key challenges
facing software engineering?

Coping with increasing diversity, demands for reduced delivery
times and developing trustworthy software.

What are the costs of software
engineering?

Roughly 60% of software costs are development costs, 40% are
testing costs. For custom software, evolution costs often exceed
development costs.

What are the best software
engineering techniques and
methods?

While all software projects have to be professionally managed and
developed, different techniques are appropriate for different types
of system. For example, games should always be developed using
a series of prototypes whereas safety critical control systems
require a complete and analyzable specification to be developed.
There are no methods and techniques that are good for everything.

What differences has the Internet
made to software engineering?

Not only has the Internet led to the development of massive, highly
distributed, service-based systems, it has also supported the
creation of an “app” industry for mobile devices which has
changed the economics of software.

and you don’t have to worry about writing program guides, documenting the pro-
gram design, and so on. However, if you are writing software that other people will
use and other engineers will change, then you usually have to provide additional
information as well as the code of the program.

Software engineers are concerned with developing software products, that is,
software that can be sold to a customer. There are two kinds of software product:

1.	 Generic products These are stand-alone systems that are produced by a
development organization and sold on the open market to any customer who is
able to buy them. Examples of this type of product include apps for mobile
devices, software for PCs such as databases, word processors, drawing packages,
and project management tools. This kind of software also includes “vertical”

	 1.1  ■  Professional software development    7

applications designed for a specific market such as library information systems,
accounting systems, or systems for maintaining dental records.

2.	 Customized (or bespoke) software These are systems that are commissioned by
and developed for a particular customer. A software contractor designs and
implements the software especially for that customer. Examples of this type of
software include control systems for electronic devices, systems written to
support a particular business process, and air traffic control systems.

The critical distinction between these types of software is that, in generic prod-
ucts, the organization that develops the software controls the software specification.
This means that if they run into development problems, they can rethink what is to
be developed. For custom products, the specification is developed and controlled by
the organization that is buying the software. The software developers must work to
that specification.

However, the distinction between these system product types is becoming increas-
ingly blurred. More and more systems are now being built with a generic product as
a base, which is then adapted to suit the requirements of a customer. Enterprise
Resource Planning (ERP) systems, such as systems from SAP and Oracle, are the
best examples of this approach. Here, a large and complex system is adapted for a
company by incorporating information about business rules and processes, reports
required, and so on.

When we talk about the quality of professional software, we have to consider that
the software is used and changed by people apart from its developers. Quality is
therefore not just concerned with what the software does. Rather, it has to include the
software’s behavior while it is executing and the structure and organization of the sys-
tem programs and associated documentation. This is reflected in the software’s qual-
ity or non-functional attributes. Examples of these attributes are the software’s
response time to a user query and the understandability of the program code.

The specific set of attributes that you might expect from a software system obvi-
ously depends on its application. Therefore, an aircraft control system must be safe, an
interactive game must be responsive, a telephone switching system must be reliable,
and so on. These can be generalized into the set of attributes shown in Figure 1.2,
which I think are the essential characteristics of a professional software system.

	 1.1.1 	 Software engineering

Software engineering is an engineering discipline that is concerned with all aspects
of software production from the early stages of system specification through to
maintaining the system after it has gone into use. In this definition, there are two
key phrases:

1.	 Engineering discipline Engineers make things work. They apply theories, meth-
ods, and tools where these are appropriate. However, they use them selectively

8    Chapter 1  ■  Introduction

Figure 1.2  Essential
attributes of good
software

Product characteristic Description

Acceptability Software must be acceptable to the type of users for which it is
designed. This means that it must be understandable, usable, and
compatible with other systems that they use.

Dependability and security Software dependability includes a range of characteristics including
reliability, security, and safety. Dependable software should not
cause physical or economic damage in the event of system failure.
Software has to be secure so that malicious users cannot access or
damage the system.

Efficiency Software should not make wasteful use of system resources such
as memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, resource utilization, etc.

Maintainability Software should be written in such a way that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a
changing business environment.

and always try to discover solutions to problems even when there are no appli-
cable theories and methods. Engineers also recognize that they must work
within organizational and financial constraints, and they must look for solutions
within these constraints.

2.	 All aspects of software production Software engineering is not just concerned
with the technical processes of software development. It also includes activities
such as software project management and the development of tools, methods,
and theories to support software development.

Engineering is about getting results of the required quality within schedule and
budget. This often involves making compromises—engineers cannot be perfection-
ists. People writing programs for themselves, however, can spend as much time as
they wish on the program development.

In general, software engineers adopt a systematic and organized approach to their
work, as this is often the most effective way to produce high-quality software.
However, engineering is all about selecting the most appropriate method for a set of
circumstances, so a more creative, less formal approach to development may be the
right one for some kinds of software. A more flexible software process that accom-
modates rapid change is particularly appropriate for the development of interactive
web-based systems and mobile apps, which require a blend of software and graphi-
cal design skills.

Software engineering is important for two reasons:

1.	 More and more, individuals and society rely on advanced software systems. We need
to be able to produce reliable and trustworthy systems economically and quickly.

2.	 It is usually cheaper, in the long run, to use software engineering methods and
techniques for professional software systems rather than just write programs as

	 1.1  ■  Professional software development    9

a personal programming project. Failure to use software engineering method
leads to higher costs for testing, quality assurance, and long-term maintenance.

The systematic approach that is used in software engineering is sometimes called
a software process. A software process is a sequence of activities that leads to the
production of a software product. Four fundamental activities are common to all
software processes.

1.	 Software specification, where customers and engineers define the software that
is to be produced and the constraints on its operation.

2.	 Software development, where the software is designed and programmed.

3.	 Software validation, where the software is checked to ensure that it is what the
customer requires.

4.	 Software evolution, where the software is modified to reflect changing customer
and market requirements.

Different types of systems need different development processes, as I explain in
Chapter 2. For example, real-time software in an aircraft has to be completely speci-
fied before development begins. In e-commerce systems, the specification and the
program are usually developed together. Consequently, these generic activities may
be organized in different ways and described at different levels of detail, depending
on the type of software being developed.

Software engineering is related to both computer science and systems engineering.

1.	 Computer science is concerned with the theories and methods that underlie
computers and software systems, whereas software engineering is concerned
with the practical problems of producing software. Some knowledge of com-
puter science is essential for software engineers in the same way that some
knowledge of physics is essential for electrical engineers. Computer science
theory, however, is often most applicable to relatively small programs. Elegant
theories of computer science are rarely relevant to large, complex problems that
require a software solution.

2.	 System engineering is concerned with all aspects of the development and evolu-
tion of complex systems where software plays a major role. System engineering
is therefore concerned with hardware development, policy and process design,
and system deployment, as well as software engineering. System engineers are
involved in specifying the system, defining its overall architecture, and then
integrating the different parts to create the finished system.

As I discuss in the next section, there are many different types of software. There are
no universal software engineering methods or techniques that may be used. However,
there are four related issues that affect many different types of software:

