


Software engineering
tenth edition

Ian Sommerville

Boston  Columbus  Indianapolis  New York  San Francisco  Hoboken 

Amsterdam  Cape Town  Dubai  London  Madrid  Milan  Munich  Paris  Montreal  Toronto  

Delhi  Mexico City  São Paulo  Sydney  Hong Kong  Seoul  Singapore  Taipei  Tokyo



Vice President and Editorial Director,  
 ECS: Marcia J. Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
Product Marketing Manager: Bram Van Kempen
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Production Project Manager: Rose Kernan
Program Manager: Carole Snyder
Global HE Director of Vendor Sourcing and  
 Procurement: Diane Hynes
Director of Operations: Nick Sklitsis
Operations Specialist: Maura Zaldivar-Garcia

Cover Designer: Black Horse Designs
Cover Image: Construction of the Gherkin,  
 London, UK./Corbis
Manager, Rights and Permissions: Rachel  
 Youdelman
Associate Project Manager, Rights and 
Permissions: Timothy Nicholls
Full-Service Project Management: Rashmi  
 Tickyani, iEnergizer Aptara®, Ltd.
Composition: iEnergizer Aptara®, Ltd.
Printer/Binder: Edwards Brothers Malloy
Cover Printer: Phoenix Color/Hagerstown
Typeface: 10/12.5 Times LT Std 

Copyright © 2016, 2011, 2006 by Pearson Higher Education, Inc., Hoboken, NJ 07030. All rights 
reserved. Manufactured in the United States of America. This publication is protected by Copyright and 
permissions should be obtained from the publisher prior to any prohibited reproduction, storage in a 
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, 
recording, or likewise. To obtain permission(s) to use materials from this work, please submit a written 
request to Pearson Higher Education, Permissions Department, 221 River Street, Hoboken, NJ 07030.

Many of the designations by manufacturers and seller to distinguish their products are claimed as 
 trademarks. Where those designations appear in this book, and the publisher was aware of a trademark 
claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include 
the development, research, and testing of theories and programs to determine their effectiveness. The author 
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the 
 documentation contained in this book. The author and publisher shall not be liable in any event for incidental 
or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London
Pearson Education Singapore, Pte. Ltd
Pearson Education Canada, Inc.
Pearson Education—Japan
Pearson Education Australia PTY, Limited

Pearson Education North Asia, Ltd., Hong Kong
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education Malaysia, Pte.Ltd.
Pearson Education, Inc., Hoboken, New Jersey

Library of Congress Cataloging-in-Publication Data on File 

 

10 9 8 7 6 5 4 3 2 1

ISBN 10:        0-13-394303-8  
ISBN 13: 978-0-13-394303-0 



Progress in software engineering over the last 50 years has been astonishing. Our 
societies could not function without large professional software systems. National 
utilities and infrastructure—energy, communications and transport—all rely on 
complex and mostly reliable computer systems. Software has allowed us to explore 
space and to create the World Wide Web—the most significant information system 
in the history of mankind. Smartphones and tablets are ubiquitous and an entire ‘apps 
industry’ developing software for these devices has emerged in the past few years.

Humanity is now facing a demanding set of challenges—climate change and 
extreme weather, declining natural resources, an increasing world population to be fed 
and housed, international terrorism, and the need to help elderly people lead satisfying 
and fulfilled lives. We need new technologies to help us address these challenges and, 
for sure, software will have a central role in these technologies. Software engineering 
is, therefore, critically important for our future on this planet. We have to continue to 
educate software engineers and develop the discipline so that we meet the demand for 
more software and create the increasingly complex future systems that we need.

Of course, there are still problems with software projects. Systems are still some-
times delivered late and cost more than expected. We are creating increasingly com-
plex software systems of systems and we should not be surprised that we encounter 
difficulties along the way. However, we should not let these problems conceal the 
real successes in software engineering and the impressive software engineering 
methods and technologies that have been developed.

This book, in different editions, has now been around for over 30 years and this edi-
tion is based around the essential principles that were established in the first edition:

1. I write about software engineering as it is practiced in industry, without taking 
an evangelical position on particular approaches such as agile development or 
formal methods. In reality, industry mixes techniques such as agile and plan-
based development and this is reflected in the book.

Preface



iv    Preface

2. I write about what I know and understand. I have had many suggestions for 
additional topics that might be covered in more detail such as open source 
development, the use of the UML and mobile software engineering. But I don’t 
really know enough about these areas. My own work has been in system depend-
ability and in systems engineering and this is reflected in my selection of 
advanced topics for the book.

I believe that the key issues for modern software engineering are managing com-
plexity, integrating agility with other methods and ensuring that our systems are 
secure and resilient. These issues have been the driver for the changes and additions 
in this new edition of my book.

Changes from the 9th edition

In summary, the major updates and additions in this book from the 9th edition are:

•	 I	have	extensively	updated	the	chapter	on	agile	software	engineering,	with	new	
material on Scrum. I have updated other chapters as required to reflect the increas-
ing use of agile methods of software engineering.

•	 I	have	added	new	chapters	on	resilience	engineering,	systems	engineering	and	
systems of systems.

•	 I	have	completely	reorganized	three	chapters	covering	reliability,	safety	and	security.

•	 I	have	added	new	material	on	RESTful	services	to	the	chapter	covering	service-
oriented software engineering.

•	 I	have	revised	and	updated	the	chapter	on	configuration	management	with	new	
material on distributed version control systems.

•	 I	 have	moved	 chapters	 on	 aspect-oriented	 software	 engineering	 and	 process	
improvement from the print version of the book to the web site.

•	 New	supplementary	material	has	been	added	to	the	web	site,	including	a	set	of	
supporting videos. I have explained key topics on video and recommended related 
YouTube videos.

The 4-part structure of the book, introduced in earlier editions, has been retained 
but I have made significant changes in each part of the book.

1. In Part 1, Introduction to software engineering, I have completely rewritten 
Chapter 3 (agile methods) and updated this to reflect the increasing use of Scrum. 
A new case study on a digital learning environment has been added to Chapter 1 
and is used in a number of chapters. Legacy systems are covered in more detail 
in Chapter 9. Minor changes and updates have been made to all other chapters.



  Preface    v

2. Part 2, which covers dependable systems, has been revised and restructured. 
Rather than an activity oriented approach where information on safety, security 
and reliability is spread over several chapters, I have reorganized this so that 
each topic has a chapter in its own right. This makes it easier to cover a single 
topic, such as security, as part of a more general course. I have added a com-
pletely new chapter on resilience engineering which covers cybersecurity, 
organizational resilience and resilient systems design.

3. In Part 3, I have added new chapters on systems engineering and systems of 
systems and have extensively revised the material on service-oriented systems 
engineering to reflect the increasing use of RESTful services. The chapter on 
aspect-oriented software engineering has been deleted from the print version but 
remains available as a web chapter.

4. In Part 4, I have updated the material on configuration management to reflect 
the increasing use of distributed version control tools such as Git. The chapter 
on process improvement has been deleted from the print version but remains 
available as a web chapter.

An important change in the supplementary material for the book is the addition of 
video recommendations in all chapters. I have made over 40 videos on a range of topics 
that are available on my YouTube channel and linked from the book’s web pages. In cases 
where I have not made videos, I have recommended YouTube videos that may be useful.

I explain the rationale behind the changes that I’ve made in this short video:
http://software-engineering-book/videos/10th-edition-changes

Readership

The book is primarily aimed at university and college students taking introductory 
and advanced courses in software and systems engineering. I assume that readers 
understand the basics of programming and fundamental data structures.

Software engineers in industry may find the book useful as general reading and to 
update their knowledge on topics such as software reuse, architectural design, 
dependability and security and systems engineering.

Using the book in software engineering courses

I have designed the book so that it can be used in three different types of software 
engineering course:

1.  General introductory courses in software engineering. The first part of the book 
has been designed to support a 1-semester course in introductory software engi-
neering. There are 9 chapters that cover fundamental topics in software  engineering. 

http://software-engineering-book/videos/10th-edition-changes


If your course has a practical component, management chapters in Part 4 may be 
substituted for some of these.

 2.  Introductory or intermediate courses on specific software engineering topics. 
You can create a range of more advanced courses using the chapters in parts 
2–4. For example, I have taught a course in critical systems using the chapters in 
Part 2 plus chapters on systems engineering and quality management. In a course 
covering software-intensive systems engineering, I used chapters on systems 
engineering, requirements engineering, systems of systems, distributed software 
engineering, embedded software, project management and project planning.

 3.  More advanced courses in specific software engineering topics. In this case, the 
chapters in the book form a foundation for the course. These are then supple-
mented with further reading that explores the topic in more detail. For example, 
a course on software reuse could be based around Chapters 15–18.

Instructors may access additional teaching support material from Pearson’s website. 
Some of this is password-protected and instructors using the book for teaching can 
obtain a password by registering at the Pearson website. The material available includes:

•	 Model	answers	to	selected	end	of	chapter	exercises.

•	 Quiz	questions	and	answers	for	each	chapter.

You can access this material at:
http://www.pearsonhighered.com/sommerville

Book website

This book has been designed as a hybrid print/web text in which core information in the 
printed edition is linked to supplementary material on the web. Several chapters include 
specially written ‘web sections’ that add to the information in that chapter. There are also 
six ‘web chapters’ on topics that I have not covered in the print version of the book.

You can download a wide range of supporting material from the book’s website 
(software-engineering-book.com) including:

•	 PowerPoint	presentations	for	all	of	the	chapters	in	the	book.

•	 A	set	of	videos	where	I	cover	a	range	of	software	engineering	topics.	I	also	rec-
ommend other YouTube videos that can support learning.

•	 An	instructor’s	guide	that	gives	advice	on	how	to	use	the	book	in	teaching	differ-
ent courses.

•	 Further	information	on	the	book’s	case	studies	(insulin	pump,	mental	health	care	
system, wilderness weather system, digital learning system), as well other case 
studies, such as the failure of the Ariane 5 launcher.

vi    Preface

http://www.pearsonhighered.com/sommerville


•	 Six	web	chapters	 covering	process	 improvement,	 formal	methods,	 interaction	
design, application architectures, documentation and aspect-oriented development.

•	 Web	sections	that	add	to	the	content	presented	in	each	chapter.	These	web	sec-
tions are linked from breakout boxes in each chapter.

•	 Additional	PowerPoint	presentations	covering	a	range	of	systems	engineering	
topics.

In response to requests from users of the book, I have published a complete 
requirements specification for one of the system case studies on the book’s web site. 
It is difficult for students to get access to such documents and so understand their 
structure and complexity. To avoid confidentiality issues, I have re-engineered the 
requirements document from a real system so there are no restrictions on its use.

Contact details

Website: software-engineering-book.com
Email: name: software.engineering.book; domain: gmail.com
Blog: iansommerville.com/systems-software-and-technology
YouTube: youtube.com/user/SoftwareEngBook
Facebook: facebook.com/sommerville.software.engineering
Twitter: @SoftwareEngBook or @iansommerville (for more general tweets)

Follow me on Twitter or Facebook to get updates on new material and comments on 
software and systems engineering.

Acknowledgements

A large number of people have contributed over the years to the evolution of this 
book and I’d like to thank everyone (reviewers, students and book users) who have 
commented on previous editions and made constructive suggestions for change. I’d 
particularly like to thank my family, Anne, Ali and Jane, for their love, help and sup-
port while I was working on this book (and all of the previous editions).

Ian Sommerville,
September 2014

  Preface    vii



Contents at a glance

Preface iii 

 Part 1 Introduction to Software Engineering 01
 Chapter 1  Introduction  03
 Chapter 2  Software processes  29
 Chapter 3  Agile software development  58
 Chapter 4  Requirements engineering  87
 Chapter 5  System modeling  124
 Chapter 6  Architectural design  153
 Chapter 7  Design and implementation  182
 Chapter 8  Software testing  212
 Chapter 9  Software evolution  241

 Part 2 System Dependability and Security 269
 Chapter 10  Dependable systems  271
 Chapter 11  Reliability engineering  292
 Chapter 12  Safety engineering  325
 Chapter 13  Security engineering  359
 Chapter 14  Resilience engineering  394

 Part 3 Advanced Software Engineering 421
 Chapter 15  Software reuse  423
 Chapter 16  Component-based software engineering  450
 Chapter 17  Distributed software engineering  476
 Chapter 18  Service-oriented software engineering  506
 Chapter 19  Systems engineering  537
 Chapter 20  Systems of systems  566
 Chapter 21  Real-time software engineering  596

 Part 4 Software management 625
 Chapter 22  Project management  627
 Chapter 23  Project planning  653
 Chapter 24  Quality management  686
 Chapter 25  Configuration management  716

Glossary 743

Subject index 763

Author index 789 



Contents

Preface iii

	 Part	1	 Introduction	to	Software	Engineering	 01

 Chapter 1  Introduction  03

1.1  Professional software development  05

1.2  Software engineering ethics  14

1.3  Case studies  17

 Chapter 2 Software processes  29

2.1   Software process models  31

2.2   Process activities  40

2.3   Coping with change  47

2.4   Process improvement  51

 Chapter 3 Agile software development  58

3.1  Agile methods  61

3.2  Agile development techniques  63

3.3  Agile project management  70

3.4  Scaling agile methods  74



x    Contents

 Chapter 4 Requirements engineering  87

4.1  Functional and non-functional requirements  91

4.2  Requirements engineering processes  97

4.3  Requirements elicitation  98

4.4  Requirements specification  106

4.5  Requirements validation  115

4.6  Requirements change  116

 Chapter 5 System modeling  124

5.1  Context models  127

5.2  Interaction models  130

5.3  Structural models  135

5.4  Behavioral models  140

5.5  model-driven architecture  145

 Chapter 6 Architectural design  153

6.1   Architectural design decisions  157

6.2   Architectural views  159

6.3   Architectural patterns  161

6.4   Application architectures  170

 Chapter 7 Design and implementation  182

7.1  Object-oriented design using the UmL  184

7.2  Design patterns  195

7.3  Implementation issues  198

7.4  Open-source development  205

 Chapter 8 Software testing  212

8.1  Development testing  217

8.2  Test-driven development  228



  Contents    xi

8.3  Release testing  231

8.4  User testing  235

 Chapter 9 Software evolution  241

9.1  Evolution processes  244

9.2  Legacy systems  247

9.3  Software maintenance  256

 Part 2 System Dependability and Security 269

 Chapter 10 Dependable systems  271

10.1  Dependability properties  274

10.2  Sociotechnical systems  277

10.3  Redundancy and diversity  281

10.4  Dependable processes  283

10.5  Formal methods and dependability  285

 Chapter 11 Reliability engineering  292

11.1  Availability and reliability  295

11.2  Reliability requirements  298

11.3  Fault-tolerant architectures  304

11.4  Programming for reliability  311

11.5  Reliability measurement  317

 Chapter 12 Safety engineering  325

12.1  Safety-critical systems  327

12.2  Safety requirements  330

12.3  Safety engineering processes  338

12.4  Safety cases  347



 Chapter 13 Security engineering  359

13.1  Security and dependability  362

13.2  Security and organizations  366

13.3  Security requirements  368

13.4  Secure systems design  374

13.5  Security testing and assurance  388

 Chapter 14 Resilience engineering  394

14.1  Cybersecurity  398

14.2  Sociotechnical resilience  402

14.3  Resilient systems design  410

 Part 3 Advanced Software Engineering 421

 Chapter 15 Software reuse  423

15.1  The reuse landscape  426

15.2  Application frameworks  429

15.3  Software product lines  432

15.4  Application system reuse  439

 Chapter 16 Component-based software engineering  450

16.1  Components and component models  453

16.2  CBSE processes  459

16.3  Component composition  466

 Chapter 17 Distributed software engineering  476

17.1  Distributed systems  478

17.2  Client–server computing  485

xii    Contents



17.3  Architectural patterns for distributed systems  487

17.4  Software as a service  498

 Chapter 18 Service-oriented software engineering  506

18.1  Service-oriented architecture  510

18.2  RESTful services  515

18.3  Service engineering  519

18.4  Service composition  527

 Chapter 19 Systems engineering  537

19.1  Sociotechnical systems  542

19.2  Conceptual design  549

19.3  System procurement  552

19.4  System development  556

19.5  System operation and evolution  560

 Chapter 20 Systems of systems  566

20.1  System complexity  570

20.2  Systems of systems classification  573

20.3  Reductionism and complex systems  576

20.4  Systems of systems engineering  579

20.5  Systems of systems architecture  585

 Chapter 21 Real-time software engineering  596

21.1  Embedded system design  599

21.2  Architectural patterns for real-time software  606

21.3  Timing analysis  612

21.4  Real-time operating systems  617

  Contents    xiii



 Part 4 Software Management 625

 Chapter 22 Project management  627

22.1  Risk management  630

22.2  managing people  638

22.3  Teamwork  642

 Chapter 23 Project planning  653

23.1  Software pricing  656

23.2  Plan-driven development  658

23.3  Project scheduling  661

23.4  Agile planning  666

23.5  Estimation techniques  668

23.6  COCOmO cost modeling  672

 Chapter 24 Quality management  686

24.1  Software quality  689

24.2  Software standards  692

24.3  Reviews and inspections  696

24.4  Quality management and agile development  700

24.5  Software measurement  702

 Chapter 25 Configuration management  716

25.1  Version management  721

25.2  System building  726

25.3  Change management  731

25.4  Release management  736

Glossary  743
Subject index  763
Author index  789

xiv    Contents



PART

My aim in this part of the book is to provide a general introduction to soft-
ware engineering. The chapters in this part have been designed to support 
a one-semester first course in software engineering. I introduce impor-
tant concepts such as software processes and agile methods, and describe 
essential software development activities, from requirements specification 
through to system evolution.

Chapter 1 is a general introduction that introduces professional software 
engineering and defines some software engineering concepts. I have also 
included a brief discussion of ethical issues in software engineering. It is 
important for software engineers to think about the wider implications of 
their work. This chapter also introduces four case studies that I use in the 
book. These are an information system for managing records of patients 
undergoing treatment for mental health problems (Mentcare), a control 
system for a portable insulin pump, an embedded system for a wilder-
ness weather station and a digital learning environment (iLearn).

Chapters 2 and 3 cover software engineering processes and agile devel-
opment. In Chapter 2, I introduce software process models, such as the 
waterfall model, and I discuss the basic activities that are part of these 
processes. Chapter 3 supplements this with a discussion of agile devel-
opment methods for software engineering. This chapter had been 

 1 Introduction 
to Software 
Engineering



extensively changed from previous editions with a focus on agile devel-
opment using Scrum and a discussion of agile practices such as stories 
for requirements definition and test-driven development.

The remaining chapters in this part are extended descriptions of the 
software process activities that are introduced in Chapter 2. Chapter 4 
covers the critically important topic of requirements engineering, where 
the requirements for what a system should do are defined. Chapter 5 
explains system modeling using the UML, where I focus on the use of 
use case diagrams, class diagrams, sequence diagrams and state dia-
grams for modeling a software system. In Chapter 6, I discuss the impor-
tance of software architecture and the use of architectural patterns in 
software design.

Chapter 7 introduces object oriented design and the use of design pat-
terns. I also introduce important implementation issues here—reuse, 
configuration management and host-target development and discuss 
open source development. Chapter 8 focuses on software testing from 
unit testing during system development to the testing of software 
releases. I also discuss the use of test-driven development—an 
approach pioneered in agile methods but which has wide applicabil-
ity. Finally, Chapter 9 presents an overview of software evolution 
issues. I cover evolution processes, software maintenance and legacy 
system management.



Introduction
1 

Objectives
The objectives of this chapter are to introduce software engineering and 
to provide a framework for understanding the rest of the book. When you 
have read this chapter, you will:

■ understand what software engineering is and why it is important;

■ understand that the development of different types of software 
system may require different software engineering techniques;

■ understand ethical and professional issues that are important  
for software engineers;

■ have been introduced to four systems, of different types, which are 
used as examples throughout the book.

Contents
1.1  Professional software development

1.2  Software engineering ethics

1.3  Case studies



4    Chapter 1  ■  Introduction

Software engineering is essential for the functioning of government, society, and national 
and international businesses and institutions. We can’t run the modern world without 
software. National infrastructures and utilities are controlled by computer-based systems, 
and most electrical products include a computer and controlling software. Industrial 
manufacturing and distribution is completely computerized, as is the financial system. 
Entertainment, including the music industry, computer games, and film and television, is 
software-intensive. More than 75% of the world’s population have a software-controlled 
mobile phone, and, by 2016, almost all of these will be Internet-enabled.

Software systems are abstract and intangible. They are not constrained by the prop-
erties of materials, nor are they governed by physical laws or by manufacturing pro-
cesses. This simplifies software engineering, as there are no natural limits to the potential 
of software. However, because of the lack of physical constraints, software systems can 
quickly become extremely complex, difficult to understand, and expensive to change.

There are many different types of software system, ranging from simple embed-
ded systems to complex, worldwide information systems. There are no universal 
notations, methods, or techniques for software engineering because different types 
of software require different approaches. Developing an organizational information 
system is completely different from developing a controller for a scientific instru-
ment. Neither of these systems has much in common with a graphics-intensive com-
puter game. All of these applications need software engineering; they do not all need 
the same software engineering methods and techniques.

There are still many reports of software projects going wrong and of “software 
failures.” Software engineering is criticized as inadequate for modern software 
development. However, in my opinion, many of these so-called software failures 
are a consequence of two factors:

1. Increasing system complexity As new software engineering techniques help us 
to build larger, more complex systems, the demands change. Systems have to be 
built and delivered more quickly; larger, even more complex systems are 
required; and systems have to have new capabilities that were previously 
thought to be impossible. New software engineering techniques have to be 
developed to meet new the challenges of delivering more complex software.

2. Failure to use software engineering methods It is fairly easy to write computer 
programs without using software engineering methods and techniques. Many 
companies have drifted into software development as their products and ser-
vices have evolved. They do not use software engineering methods in their every-
day work. Consequently, their software is often more expensive and less reliable 
than it should be. We need better software engineering education and training to 
address this problem.

Software engineers can be rightly proud of their achievements. Of course, we still 
have problems developing complex software, but without software engineering we 
would not have explored space and we would not have the Internet or modern tele-
communications. All forms of travel would be more dangerous and expensive. 
Challenges for humanity in the 21st century are climate change, fewer natural 



  1.1  ■  Professional software development    5

resources, changing demographics, and an expanding world population. We will rely 
on software engineering to develop the systems that we need to cope with these issues.

	 1.1	 Professional	software	development

Lots of people write programs. People in business write spreadsheet programs to 
simplify their jobs; scientists and engineers write programs to process their experi-
mental data; hobbyists write programs for their own interest and enjoyment. 
However, most software development is a professional activity in which software is 
developed for business purposes, for inclusion in other devices, or as software prod-
ucts such as information systems and computer-aided design systems. The key dis-
tinctions are that professional software is intended for use by someone apart from its 
developer and that teams rather than individuals usually develop the software. It is 
maintained and changed throughout its life.

Software engineering is intended to support professional software development 
rather than individual programming. It includes techniques that support program 
specification, design, and evolution, none of which are normally relevant for per-
sonal software development. To help you to get a broad view of software engineer-
ing, I have summarized frequently asked questions about the subject in Figure 1.1.

Many people think that software is simply another word for computer programs. 
However, when we are talking about software engineering, software is not just the 
programs themselves but also all associated documentation, libraries, support web-
sites, and configuration data that are needed to make these programs useful. A pro-
fessionally developed software system is often more than a single program. A system 
may consist of several separate programs and configuration files that are used to set 
up these programs. It may include system documentation, which describes the struc-
ture of the system, user documentation, which explains how to use the system, and 
websites for users to download recent product information.

This is one of the important differences between professional and amateur soft-
ware development. If you are writing a program for yourself, no one else will use it 

History of software engineering

The notion of software engineering was first proposed in 1968 at a conference held to discuss what was then 
called the software crisis (Naur and Randell 1969). It became clear that individual approaches to program devel-
opment did not scale up to large and complex software systems. These were unreliable, cost more than 
expected, and were delivered late.

Throughout the 1970s and 1980s, a variety of new software engineering techniques and methods were 
developed, such as structured programming, information hiding, and object-oriented development. Tools and 
standard notations were developed which are the basis of today’s software engineering.

http://software-engineering-book.com/web/history/

http://software-engineering-book.com/web/history


6    Chapter 1  ■  Introduction

Figure 1.1 Frequently 
asked questions about 
software engineering

Question Answer

What is software? Computer programs and associated documentation. Software 
products may be developed for a particular customer or may be 
developed for a general market.

What are the attributes of good 
software?

Good software should deliver the required functionality and 
performance to the user and should be maintainable, dependable 
and usable.

What is software engineering? Software engineering is an engineering discipline that is concerned 
with all aspects of software production from initial conception to 
operation and maintenance.

What are the fundamental 
software engineering activities?

Software specification, software development, software validation 
and software evolution.

What is the difference between 
software engineering and 
computer science?

Computer science focuses on theory and fundamentals; software 
engineering is concerned with the practicalities of developing and 
delivering useful software.

What is the difference between 
software engineering and system 
engineering?

System engineering is concerned with all aspects of computer-
based systems development including hardware, software and 
process engineering. Software engineering is part of this more 
general process.

What are the key challenges 
facing software engineering?

Coping with increasing diversity, demands for reduced delivery 
times and developing trustworthy software.

What are the costs of software 
engineering?

Roughly 60% of software costs are development costs, 40% are 
testing costs. For custom software, evolution costs often exceed 
development costs.

What are the best software 
engineering techniques and 
methods?

While all software projects have to be professionally managed and 
developed, different techniques are appropriate for different types 
of system. For example, games should always be developed using 
a series of prototypes whereas safety critical control systems 
require a complete and analyzable specification to be developed. 
There are no methods and techniques that are good for everything.

What differences has the Internet 
made to software engineering?

Not only has the Internet led to the development of massive, highly 
distributed, service-based systems, it has also supported the 
creation of an “app” industry for mobile devices which has 
changed the economics of software.

and you don’t have to worry about writing program guides, documenting the pro-
gram design, and so on. However, if you are writing software that other people will 
use and other engineers will change, then you usually have to provide additional 
information as well as the code of the program.

Software engineers are concerned with developing software products, that is, 
software that can be sold to a customer. There are two kinds of software product:

1. Generic products These are stand-alone systems that are produced by a 
development organization and sold on the open market to any customer who is 
able to buy them. Examples of this type of product include apps for mobile 
devices, software for PCs such as databases, word processors, drawing packages, 
and project management tools. This kind of software also includes “vertical” 



  1.1  ■  Professional software development    7

applications designed for a specific market such as library information systems, 
accounting systems, or systems for maintaining dental records.

2. Customized (or bespoke) software These are systems that are commissioned by 
and developed for a particular customer. A software contractor designs and 
implements the software especially for that customer. Examples of this type of 
software include control systems for electronic devices, systems written to 
support a particular business process, and air traffic control systems.

The critical distinction between these types of software is that, in generic prod-
ucts, the organization that develops the software controls the software specification. 
This means that if they run into development problems, they can rethink what is to 
be developed. For custom products, the specification is developed and controlled by 
the organization that is buying the software. The software developers must work to 
that specification.

However, the distinction between these system product types is becoming increas-
ingly blurred. More and more systems are now being built with a generic product as 
a base, which is then adapted to suit the requirements of a customer. Enterprise 
Resource Planning (ERP) systems, such as systems from SAP and Oracle, are the 
best examples of this approach. Here, a large and complex system is adapted for a 
company by incorporating information about business rules and processes, reports 
required, and so on.

When we talk about the quality of professional software, we have to consider that 
the software is used and changed by people apart from its developers. Quality is 
therefore not just concerned with what the software does. Rather, it has to include the 
software’s behavior while it is executing and the structure and organization of the sys-
tem programs and associated documentation. This is reflected in the software’s qual-
ity or non-functional attributes. Examples of these attributes are the software’s 
response time to a user query and the understandability of the  program code.

The specific set of attributes that you might expect from a software system obvi-
ously depends on its application. Therefore, an aircraft control system must be safe, an 
interactive game must be responsive, a telephone switching system must be reliable, 
and so on. These can be generalized into the set of attributes shown in Figure 1.2, 
which I think are the essential characteristics of a  professional software system.

	 1.1.1		 Software	engineering

Software engineering is an engineering discipline that is concerned with all aspects 
of software production from the early stages of system specification through to 
maintaining the system after it has gone into use. In this definition, there are two 
key phrases:

1. Engineering discipline Engineers make things work. They apply theories, meth-
ods, and tools where these are appropriate. However, they use them selectively 



8    Chapter 1  ■  Introduction

Figure 1.2 Essential 
attributes of good 
software

Product characteristic Description

Acceptability Software must be acceptable to the type of users for which it is 
designed. This means that it must be understandable, usable, and 
compatible with other systems that they use.

Dependability and security Software dependability includes a range of characteristics including 
reliability, security, and safety. Dependable software should not 
cause physical or economic damage in the event of system failure. 
Software has to be secure so that malicious users cannot access or 
damage the system.

Efficiency Software should not make wasteful use of system resources such  
as memory and processor cycles. Efficiency therefore includes 
responsiveness, processing time, resource utilization, etc.

Maintainability Software should be written in such a way that it can evolve to  
meet the changing needs of customers. This is a critical attribute 
because software change is an inevitable requirement of a  
changing business environment.

and always try to discover solutions to problems even when there are no appli-
cable theories and methods. Engineers also recognize that they must work 
within organizational and financial constraints, and they must look for solutions 
within these constraints.

2. All aspects of software production Software engineering is not just concerned 
with the technical processes of software development. It also includes activities 
such as software project management and the development of tools, methods, 
and theories to support software development.

Engineering is about getting results of the required quality within schedule and 
budget. This often involves making compromises—engineers cannot be perfection-
ists. People writing programs for themselves, however, can spend as much time as 
they wish on the program development.

In general, software engineers adopt a systematic and organized approach to their 
work, as this is often the most effective way to produce high-quality software. 
However, engineering is all about selecting the most appropriate method for a set of 
circumstances, so a more creative, less formal approach to development may be the 
right one for some kinds of software. A more flexible software process that accom-
modates rapid change is particularly appropriate for the development of interactive 
web-based systems and mobile apps, which require a blend of software and graphi-
cal design skills.

Software engineering is important for two reasons:

1. More and more, individuals and society rely on advanced software systems. We need 
to be able to produce reliable and trustworthy systems economically and quickly.

2. It is usually cheaper, in the long run, to use software engineering methods and 
techniques for professional software systems rather than just write programs as 



  1.1  ■  Professional software development    9

a personal programming project. Failure to use software engineering method 
leads to higher costs for testing, quality assurance, and long-term maintenance.

The systematic approach that is used in software engineering is sometimes called 
a software process. A software process is a sequence of activities that leads to the 
production of a software product. Four fundamental activities are common to all 
software processes.

1. Software specification, where customers and engineers define the software that 
is to be produced and the constraints on its operation.

2. Software development, where the software is designed and programmed.

3. Software validation, where the software is checked to ensure that it is what the 
customer requires.

4. Software evolution, where the software is modified to reflect changing customer 
and market requirements.

Different types of systems need different development processes, as I explain in 
Chapter 2. For example, real-time software in an aircraft has to be completely speci-
fied before development begins. In e-commerce systems, the specification and the 
program are usually developed together. Consequently, these generic activities may 
be organized in different ways and described at different levels of detail, depending 
on the type of software being developed.

Software engineering is related to both computer science and systems engineering.

1. Computer science is concerned with the theories and methods that underlie 
computers and software systems, whereas software engineering is concerned 
with the practical problems of producing software. Some knowledge of com-
puter science is essential for software engineers in the same way that some 
knowledge of physics is essential for electrical engineers. Computer science 
theory, however, is often most applicable to relatively small programs. Elegant 
theories of computer science are rarely relevant to large, complex problems that 
require a software solution.

2. System engineering is concerned with all aspects of the development and evolu-
tion of complex systems where software plays a major role. System engineering 
is therefore concerned with hardware development, policy and process design, 
and system deployment, as well as software engineering. System engineers are 
involved in specifying the system, defining its overall architecture, and then 
integrating the different parts to create the finished system.

As I discuss in the next section, there are many different types of software. There are 
no universal software engineering methods or techniques that may be used. However, 
there are four related issues that affect many different types of software:




